If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-90x=17
We move all terms to the left:
30x^2-90x-(17)=0
a = 30; b = -90; c = -17;
Δ = b2-4ac
Δ = -902-4·30·(-17)
Δ = 10140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10140}=\sqrt{676*15}=\sqrt{676}*\sqrt{15}=26\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-26\sqrt{15}}{2*30}=\frac{90-26\sqrt{15}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+26\sqrt{15}}{2*30}=\frac{90+26\sqrt{15}}{60} $
| 12y+10=50 | | (5w+1)(3-w)=0 | | −12=c−89 | | -19-5b=-(1-4b) | | 30x^2-90x=56 | | -(-2x+5)=2(x+4)+19 | | -134+7x=154-x | | 6b=3b+6 | | 3x^2+11x-2600=0 | | x+44=-11 | | 2(g-2)-4=2(g-13) | | 2x-(250000/x^2)=0 | | C=8(y-5) | | 75/8=5/8x | | 2(5x-3)=144 | | 4x+x+(x-20)=180 | | 1/(x-1)=1/3 | | 1/2(x-54)=18+5x | | -6(-8n-5)=174 | | 9f=2/1(12f−2) | | 1/(s-1)=1/3 | | Y=3x–1(0,2) | | 11/13=v/10 | | x-18=-57 | | -2(4+n)-5/8=7/8 | | 5n+8=2n+1 | | 3x+7=2×+14+× | | -3x+29=5(-5+3x) | | 56x^2+15x=56 | | 0=50+21x-x^2 | | (x+20)^2=7 | | -28+5y=17 |